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Enhancing Thyroid Disease Detection through IWSO-based Ontology 

Matching and En-SwinT+ Classification Model 

 

Abstract  
Currently, medical informatics technology, Clinical decision support systems, and the 

medical technology are all making heavy use of medical ontologies. These coordinated and 

well-integrated systems are necessary for the smooth and accurate transmission of data and 

information. This, in turn, can lead to superior patient care and control of illnesses. Therefore, 

incorporating medical ontologies into these pathways is very important to its future success 

and development. Thyroid disease is a complicated health problem that has too much thyroid 

hormone. This is generally diagnosed with techniques such as CT scans and X-rays. The 

thyroid can be seen in the neck, just below the larynx. Thyroid problems can be found and 

solved by using Deep Learning (DL) technology in the proposed treatment. So, in this paper, 

to build semantic links between different datasets, this paper first apply Metaheuristic 

Optimization Strategy at Improved War Strategy Optimization (IWSO) at the beginning of 

our study to match ontologies properly. Subsequent to this, a preprocessing including Log 

and Gaussian filters is done to complete missing values and normalize features data for 

convenient comparison at the times of the modelling training. Then follows feature 

extraction, performed by the Gabor Wavelet Transform (GWT). For early detection of this 

disease, the study uses an Enhanced Swin transformer (En-SwinT+) model. This is a 

specially designed model by deep learning for just such diseases. Swin Transformer Inside 

has been refitted into a thyroid disease detection device. Our proposed model does better than 

the existing models. It attains an accuracy of 99. 45 % in the task of recognizing problems 

related to the thyroid gland. With the up-to-date and revolutionary methods employed in this 

research, thyroid disease identification effectiveness and accuracy can be greatly improved. 

Keywords: Ontology, Thyroid disease detection, Gabor Wavelet Transform, Improved war 

strategy optimization, Swin transformer. 

1. Introduction 
 When we are classifying this type then the systematic organization and the expression 

of medical thoughts and the collection and application of imaging data knowledge is the 

Huangong [1]. It uses a systematic approach to explain the links between illnesses, physical 

manifestations and their imaging features [2]. By relying on classification systems based on 

integrating ontological concepts, the differential diagnosis and treatment planning will be 
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more scientific and accessible. Ontologies help standardize medical terminologies and enable 

data from different sources of medical imaging to be processed [3]. Through this approach, 

different healthcare systems can exchange data, and data of poorly defined structure can be 

overcome, too [4]. Ontology, which can help collect the disorganized knowledge about how 

pictures are connected in detail, is a critical instrument for medical and image classification, 

and it might help spur on the computerized image interpretation Ford diagnosis. The thyroid 

gland's study of structure and function. There must, then, be a presence or absence of an 

anomaly in the structure or performance of that organ in order to diagnose any linked disease 

[5]. 

Hypothyroidism and hyperthyroidism affect metabolism. Timely action requires early 

detection. [6] Nuclear medicine and ultrasound are advanced imaging methods aiding in 

diagnosis. An algorithm trained on a large corpus of thyroid pictures better and more 

accurately determines abnormalities. This is what we mean by interdisciplinary science to 

make early, correct diagnoses of thyroid problems so that patients may be treated effectively 

[7]. Identifying thyroid illness is problematic due to symptoms' intricacy and early nature, 

variations in gland architecture from individual to individual, and challenges posed by 

imaging interpretation. Moreover, because benign and malignant instances overlap in features 

[8], it is hard to distinguish between them. These difficulties emphasize the need to develop 

sophisticated technology and complicated algorithms for accurate, timely identification [9]. 

Using multi-layer neural networks, deep learning can automatically extract 

hierarchical or multilevel representations from data. It is a prerequisite for classification [10]. 

Because it can recognize complex patterns and features, its superb accuracy allows voice or 

image recognition, natural language processing, and medical diagnosis [11]. Because deep 

learning models are so complex and advanced, they can extract valuable information from 

massive datasets. Their learning models include convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs). This will make applications of artificial intelligence and 

machine learning more effective, making these techniques very efficient for complex 

classification in many fields [12,13]. 

1.1. Motivation 

The emphasis placed by this trailblazing approach on the use of ontology is rooted in 

its powerful impact on advancing medical data integration and knowledge sharing, especially 

about detecting thyroid disease. The study creates a common standard in a structured 

ontology to systematically organize and present primary medical information by their 

respective relationships. This provides coherence in an otherwise complex field of thyroid 

diseases. This ontology is crucial in the powerful metaheuristic optimization technique, 

IWSO. It transforms medical images into relevant features for your analysis. More accurate 

and more efficient detection of thyroid disease not only improves the readability of diagnostic 

data but contributes to healthcare's more significant objective to get better patient results. 

1.2. Main Contributions 

• This paper emphasizes developing and using an ontology matching in thyroid disease 

detection. A novel metaheuristic optimization technique called Improved War Strategy 

Optimisation (IWSO) is applied to enhance the selection of significant features from 
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different datasets for thyroid image preprocessing, resulting in improved thyroid 

disease detection outcomes. 

• Implements Log and Gaussian filters in the preprocessing step to refine and enhance 

critical features for further processing of thyroid images. 

• This paper utilizes Gabor Wavelet Transform (GWT) to extract the features from 

preprocessed images. 

• Adopts the En-SwinT+, a specific type of Deep Learning model for classifying thyroid 

diseases. The Swin Transformer's internal architecture is optimized to ensure highly 

accurate detection. 

• The proposed model demonstrates a significant advancement in accuracy, achieving 

an impressive 99.3% accuracy in detecting thyroid diseases. 

2. Related Works 
Alnaggar et al. [14] developed an excellent multiclass classification model using 

XGBoost. Sorting people according to their specific thyroid issues was their main priority. 

The two main advancements were a multiclass classification method that could differentiate 

between three different forms of thyroid diseases and enhanced feature selection accuracy. 

Notably, the very selective algorithm XGBoost demonstrated superior classification 

performance. Their model achieved an impressive 99% accuracy with hyperparameter 

optimization. 

Prathibha et al. [15] established a paradigm for diagnosing thyroid problems using 

deep learning (DL) methods. To differentiate between hypergonadism, hypothyroidism, and 

thyroid nodules, among other thyroid disorders, they used a unique CNN-based ResNet 

architecture. Accuracy and efficiency were improved during training by using two optimizers. 

Their DL algorithms built with Keras within the Tensor Flow framework performed much 

better than previous studies in classifying thyroid diseases. The enhanced ResNet model 

attained an estimated 97% accuracy as opposed to the old design's 94% accuracy. In order to 

deduce thyroid problems from scanned photos, they also developed an online platform. 

Kirsch's edge detector was used by Shankarlal et al. [16] to improve picture pixels in 

order to suggest a cancer detection technique. They used the Tree Contourlet Transform 

(DTCT) to obtain coefficients from the corrected pictures. These features were then used to 

train the Co-Active Adaptive Neuro segmentation method that could identify cancerous 

patches in thyroid imaging data. A CNN algorithm then established the tumour grade. 

Brindha and Muthukumaravel's study [17] aimed to determine how accurately two 

classifier algorithms detected thyroid conditions. They compared the Support Vector Machine 

(SVM) and Convolutional Neural Network (CNN), using data from the UCI library to create 

models for training. In the case of detecting hypothyroidism and hyperthyroidism, CNN tides 

over SVM. On accuracy (89%) or precision (87%), respectively. 

Wang et al. [18] designed an advanced learning-based computer-aided diagnostic 

(CAD) approach for predicting cervical lymph node metastasis (LNM) from CT scans of 

patients with thyroid cancer as their study objective. Their system fuses CT data analysis and 
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advanced LN identification by applying region-based detection networks and residual 

networks with attention modules. 

Shankarlal et al. [19] introduced a computer-aided method for identifying tumours 

and their boundaries in thyroid ultrasound images using machine learning and deep learning 

techniques. Their technique used the co-active Adaptive Neuro Expert System (CANFES) 

classifier for feature computation, edge augmentation, transform application and 

classification. After the tumours were located by morphological segmentation, they used 

CNN to classify the extra diagnosis. 

Zhang et al. [20] classified thyroid disease groups using ultrasounds and computed 

tomography (CT) images. Using a cutting-edge deep convolutional neural network 

architecture (CNN), they created a diagnostic model to distinguish between different thyroid 

conditions. Their model suggests that visual modalities have good accuracy for both 

ultrasound (0.972) and CT scans (0.942); they may be utilized to identify thyroid problems. 

2.1. Research gap 
Related work has made rapid progress using machine learning and deep learning 

methods for diagnosing thyroid disease with imaging data. However, a gap between these 

advanced techniques and medical ontologies exists, leading to less complete diagnostic 

support systems. However, these deep learning models produce impressive accuracy rates 

ranging from 97 % to 99.45 %, using imaging tools like CT scans and ultrasounds, so there is 

a need for a bridge between them and medical ontologies. Implementing ontologies in 

diagnostic systems could lead to more easily understood results, a better understanding of the 

problems detected, and standardized terminology for thyroid disorders. A methodology 

capable of integrating these deep learning models with medical ontologies could help 

tremendously in better clinical decision-making. With this, patients will receive more 

effective and informed treatment strategies for thyroid disease. 

3. Proposed Methodology 
This study proposes an ontology-based classification system for thyroid diseases. The 

steps of the suggested approach are shown in Figure 1. The initial step is the ontology 

matching using IWSO, image preprocessing with Log and Gaussian filter, feature extraction 

using GWT and enhanced Swin Transformer classification. 

 

 

Figure 1. Workflow of the proposed model 



 
 

403 

 

Vol. 20, No. 1.  (2024)  

E ISSN: 1672-2531 

3.1. Dataset Collection 

Most earlier research has evaluated deep learning or machine learning models using 

CT or X-ray scan datasets from nearby hospitals. Data is so valuable in the deep learning era 

that many startups have offered image annotation services to collect and label data. Kaggle is 

one well-known platform to evaluate the suggested model [21–25]. New thyroid datasets 

from the UCI repository, including ultrasound images for hyper- and hypothyroid diseases, 

have also been utilized to evaluate the suggested system's performance. The quantity of 

datasets collected for the assessment of the proposed method is shown in Table 1: 

Table 1: Dataset collection 

Type of Disease No. of images 

Thyroid cancer 99 

Hyperthyroid 77 

Hypo thyroid 110 

Thyroid nodules 146 

Normal thyroid 88 

Thyroiditis 74 

The gathered datasets have been classified according to the diseases they represent. 

Figure 2 shows a sample image of each disease. 

 

(a) Thyroid Cancer 

 

(b) Hyperthyroid 
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(c) Hypothyroid 

 

(d) Thyroid Nodules 

 

(e) Normal Thyroid 

 

(f) Thyroiditis 

Figure 2. Sample datasets 

3.2. Ontology Matching using IWSO 

This paper uses Improved war strategy optimization for ontology matching between 

two different datasets. 

3.2.1. Basic Concepts 

Definition 1 (Ontology): An ontology 𝑂 is a tuple: 𝑂 = (ℂ,ℝ,ℚ, 𝑉) 

• C is a collection of classes that Owl has created: Class. 

• ℛ is a collection of relations that characterize the relationship between objects. 

• Q symbolizes a collection of examples within a specific domain. 

• 𝑉 symbolizes a collection of annotations used to give entities descriptive information. 
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Definition 2 (Ontology matching): The process by which an algorithm discovers a set of 

correspondences between entities that belong to different ontologies is known as ontology 

matching. The equation (1) can be used to formalize it: 

𝐴 = 𝑓(𝑂1,  𝑂2, 𝜁, Γ) (1) 

Where 𝐴 is an alignment, or corresponding result, between 𝑂1 and 𝑂2, 𝜁 is a collection 

of materials that includes more straightforward matches or background information, and Γ is 

a collection of parameters used in ontology matching. 

Definition 3 (Entity): Within the ontology framework, an entity denotes a specific class or 

property; for example, a class entity represents a class, and a property entity represents a 

property. 

Definition 4 (Correspondence). A mapping or correspondence between an ontology-derived 

entity 𝑒1, 𝑂1 and an entity 𝑒2 coming from ontology O2 is in this work defined as a 5-tuple: 

 Cor = ⟨𝑒1, 𝑒2, 𝑟, 𝜂, 𝑔⟩ 

Where: 

• 𝑟 is a connection between the things 𝑒1 and 𝑒2, like equivalency (≡) and broader (⊒). 

• 𝜂 is an entity's similarity value 𝑒1 and 𝑒2. 

• 𝑔 is a mark that has been created especially for the suggested strategy. 

The methodology recommends incorporating the new IWSO metaheuristic 

optimization technique to support its ontology matching strategy. Customized to build 

ontologies, this approach dramatically affects the choice of critical characteristics needed for 

additional thyroid image processing. Using IWSO, the system can identify and highlight 

important features in thyroid images, improving the effectiveness of the image analysis 

procedures. 

3.2.2. War Strategy Optimization Algorithm 

The WSO algorithm was first presented by Ayyarao et al. in 2022 [26], and historical 

military strategies inspired it. Applying soldier movements to solve optimization problems 

imitates methods used in previous battles. During the search process of the WSO algorithm, 

all possible solutions come together to form an army, with each solution serving as a soldier. 

The king commands the military, with the strongest soldier serving as commander. The 

soldiers constantly reposition themselves as the commander and king move. Considering the 

current status of the "war," the king plans a methodical offensive. 

There are regular status updates for every soldier, including recruitment or relocation 

tactics in case of injuries or unfavourable placements. The WSO algorithm uses four update 

strategies to determine the position of soldiers. However, its current method produces slow 

convergence and low accuracy. This problem is addressed by the improved WSO algorithm, 

which incorporates dynamic step sizes, improves result accuracy, and speeds up problem-

solving. This is a summary of the improved WSO algorithm's mathematical representation: 
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• Attack strategy 

To update their positions, soldiers strategically rearrange themselves about the 

positions of the commander and king. Equation (2) provides a mathematical description of 

this process: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 2 ⋅ rand ⋅ (𝐶 −  King ) + rand ⋅ (𝑊𝑖 ⋅ King − 𝑋𝑖(𝑡)) (2) 

The soldier's new position at iteration 𝑋𝑖(𝑡 + 1) is represented by 𝑡 + 1,  𝑋𝑖(𝑡), and 

the soldier's position at iteration 𝑡 is indicated by 𝑋𝑖(𝑡). Here, the terms "  " and "King" 

denote the king and the commander in that order, and "𝑊𝑖" indicates the importance of the 

king's status. 

• Rank and weight updating 

Soldiers choose to be in better positions to increase their advantage in combat, 

directly affecting their combat efficiency and rank. The following is represented 

mathematically in equations (3) and (4): 

𝑋𝑖(𝑡 + 1) = (𝑋𝑖(𝑡 + 1)) ⋅ (𝐹𝑛 ≥ 𝐹𝑝) + (𝑋𝑖(𝑡)) ⋅ (𝐹𝑛 < 𝐹𝑝) (3) 

𝑅𝑖 = (𝑅𝑖 + 1) ⋅ (𝐹𝑛 ≥ 𝐹𝑝) + (𝑅𝑖) ⋅ (𝐹𝑛 < 𝐹𝑝) (4) 

𝐹𝑛 denotes the Combat effectiveness of the soldier in the new role, 𝐹𝑝 shows how 

successful they were in their prior position, and 𝑅𝑖 represents the soldier's rank.  

Soldiers are ranked according to their effectiveness, which affects the modified 

weight, as shown by equation (5). 

𝑊𝑖 = 𝑊𝑖 ⋅ (1 − 𝑅𝑖/𝑇)
𝛼 (5) 

Here, 𝛼 denotes an exponential factor, and 𝑇 represents the number of iterations. 

• Defence strategy 

Soldiers measure their distance from the king in times of war to make sure his safety 

is the top priority, as shown in equation (6): 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 2 ⋅ rand ⋅ (King − 𝑋rand (𝑡)) + rand ⋅ 𝑊𝑖 ⋅ (𝐶 − 𝑋𝑖(𝑡)) (6) 

The symbol for the soldier's random position at iteration 𝑡 is  𝑋rand (𝑡).  

• Replacement/Relocation of weak soldiers 

To improve the standing of soldiers who are not as strong, the WSO algorithm uses 

two different strategies. First, using equation (7) as a guide, it moves the weaker soldiers to 

the middle of the battlefield. The second way it uses equation (8) is to create new soldiers 

randomly. 

𝑋𝑤(𝑡 + 1) = 𝐿𝑏 +  rand ⋅ (𝑈𝑏 − 𝐿𝑏) (7) 

𝑋𝑤(𝑡 + 1) = −(1 − randn) ⋅ (𝑋𝑤(𝑡) − median (𝑋)) +  King (8) 
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𝑋𝑤(𝑡 + 1) denotes the iteration in place of the feeble soldiers 𝑡 + 1, 𝑈𝑏, and 𝐿𝑏 for 

the respective upper and lower value limits. A uniformly distributed random number between 

0 and 1 is denoted by the symbol *random; the median function is represented by the symbol 

median (⋅).  

3.2.3. IWSO Algorithm 

An upgrade was made to the WSO algorithm to improve the approach to changing 

ranks and weights and reorganizing the weaker soldier replacement or relocation procedure. 

These changes were made to improve the algorithm's overall performance. 

• Better updating of ranks and weight 

Soldier ranks were initially calculated by the algorithm using a fixed exponential 

factor. A dynamic approach was used to improve both the early-stage global search and late-

stage convergence capabilities. This required modifying equation (9)'s exponential factor 

according to the iteration number (t). 

𝛼 = 2(1 − 𝑒−𝑡/𝑇) (9) 

• Better substitution or transfer of less capable soldiers 

Initially, the algorithm used a fixed exponential factor to determine soldier ranks. A 

dynamic approach was used to improve both the early-stage global search and late-stage 

convergence capabilities. This required modifying equation (10)'s exponential factor 

according to the iteration number (t). 

𝑋𝑤(𝑡 + 1) =

{
 
 

 
  Lb r rand ⋅ (𝑈𝑏 − 𝐿𝑏) 𝑡 ≤

1

3
𝑇

𝛽(𝐿𝑏 + rand ⋅ (𝑈𝑏 − 𝐿𝑏)) + (1 − 𝛽)(−(1 − randn) ⋅ (𝑋𝑤(𝑡) − median (𝑋)) + King)
1

3
𝑇 < 𝑡 ≤

2

3
𝑇

−(1 − randn) ⋅ (𝑋𝑤(𝑡) − median (𝑋)) +  King 𝑡 >
2

3
𝑇

  (10) 

𝛽 = 𝑒1−
3𝑡

𝑇  (11) 

Moreover, Figure 3 displays the flow chart of the IWSO algorithm. All these changes are 

aimed at improving the algorithm's performance and efficiency. 
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Figure 3. Flowchart of IWSO 

3.3. Preprocessing using Log and Gaussian Filters 

After important features are extracted using IWSO from a thyroid image dataset, these 

features are preprocessed. Using a log filter reduces noise and aids in edge recognition in 

thyroid images. This study applied a log filter to both the reference and distorted thyroid 

images, and then a Gaussian filter [27] was used to reduce noise further. Equation (12), where 

𝜎 stands for the standard deviation and 𝐿(𝑝, 𝑞) indicates the location-based (𝑝, 𝑞) filter, is the 

mathematical expression for the Log filter. 

𝐿(𝑝, 𝑞) = −
1

𝜋𝜎4
(1 −

𝑝2+𝑞2

2𝜎2
) exp (−

𝑝2+𝑞2

2𝜎2
) (12) 

3.4. GWT Feature Extraction 

A helpful texture description can be obtained using GWT to extract multi-scale 

features from ultrasound images at different orientations [28]. The Gaussian kernel feature of 

the Gabor filter is used to process a complex sinusoidal signal on its spatial region. Equation 

(13) represents the Gabor filter's sinusoidal signal. 

𝑔 =
𝑠2

𝜋𝛾𝜂
exp (−

𝑥′+𝛾2𝑦′

2𝜎2
) exp (𝑗2𝜋𝑠𝑥′ + 𝜑)     (13) 
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Here, 𝜃 is the frequency's orientation in phase offset 𝜑. The standard deviation 𝜎 is applied to 

the Gaussian envelope, and the elliptic features are shown by 𝛾. Equations (14) and (15) 

below delineate the 𝑥′ and 𝑦′ sections. 

𝑥′ = 𝑥cos 𝜃 + 𝑦sin 𝜃     (14) 

𝑦′ = 𝑥sin 𝜃 + 𝑦cos 𝜃    (15) 

Six scales and four orientations are used to create 24 multi-scale images for the GWT. For 

these multidirectional images, four statistical features are measured: entropy, energy, 

homogeneity, and correlation. 

3.5. En-SwinT+ model 

The En-SwinT+ model makes classification easier after post-preprocessing. Its Patch 

Encoder uses a convolutional layer for feature extraction and a Patch Partitioner to create 

patches from the previously processed image. The Swin Transformer that is being 

suggested +  different approaches to patch partitioning and embedding between the model 

and the Swin Transformer model [29]. 

Regarding the Swin Transformer prototype, patch sizes are tailored to contain 

individual dynamic objects, leading the preprocessed image 𝑝𝑡 to be divided into a set of 

fixed-size patches 𝑝𝑡,1,  𝑝𝑡,2, … ,  𝑝𝑡,𝑛 by the Patch Partitioner and 𝑛 denotes the number of 

pixels. The token features 𝑐𝑡,1, 𝑐𝑡,2, … , 𝑐𝑡,𝑛 are obtained from the raw RGB pixel values using 

a convolutional layer, as shown in Figure 4 and explained in equation (16). 

𝑐𝑡,𝑛 = Conv (𝑓𝑝(𝑝𝑡))(𝑛 = 1,2, … ,𝑁) (16) 

Conv, 𝑓𝑝, represents the convolutional layer 𝑓𝑝(⋅), which signifies Patch Partitioner, 

and N represents the total number of patches. 

 

Figure 4. The Patch Encoder Process. 

The Swin Transformer +  Blocks (designated as (𝑎), (𝑏), and (𝑐)) that are in charge of 

feature extraction and augmentation are housed in three stages of the Swin Transformer + 

model. These blocks, which are made up of a Window Attention Processor, MLP, and 

Padding Handler, receive token sets 𝐶𝑡 = {𝑐𝑡,1, 𝑐𝑡,2, … , 𝑐𝑡,𝑛} as input and produce features that 

are used for the prediction of subsequent actions, taking associated losses into account.  
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(a) 

 

(b) 

 

(c) 

Figure 5. The Swin Transformer +  Block configuration, arranged from above (a-c): 

a) The initial Swin Transformer Block in the stage; b) The subsequent Swin Transformer  +  

Block in the stage; c) The final Swin Transformer  +  Block in the stage. 

Because the Swin Transformer +  Blocks rely on a window size as a basis for token 

grouping, they differ from the Swin Transformer + Blocks in terms of quantity and structure. 

Moreover, a shift by ⌊
𝑊

2
⌋ and a window of size W are needed to rearrange tokens. This 

requires a change by ⌈
𝑊

2
⌉. Therefore, the Swin Transformer +  Blocks equals [

𝑊

2
] + 1 plus one 

more step for the original token arrangement. 

Every Swin Transformer + Block is built differently. A Padding Handler is 

incorporated into each of these blocks before and after the Window Focus Processor to 

support dynamic elements within fixed patch sizes. The Swin Transformer Block does not 

include this particular function. For example, Figure 5a shows that the Padding Handler is 

only integrated into the Swin Transformer Block by the first Swin Transformer + Block. 

Figure 5b, however, shows the second Swin Transformer +  Block positioned in the centre, 

which improves features by applying successive cyclic shifts inside the token group. 

Nevertheless, the third Swin Transformer + Block is the only one where token order 

restoration occurs (Figure 5c). Consequently, the sequence within Swin Transformer + Blocks 

follows a periodic change contrary to the Swin Transformer's cyclic shift-reverse-cyclic shift-

reverse pattern, which is cyclic. 
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The Padding Handler, a crucial part of the Swin Transformer+ Block, applies zero-

value padding to guarantee consistent token distribution about window size. If the height or 

width of the tokens does not match the size of the window, then more padding is added to the 

rows or columns. However, these additional paddings help with token grouping within 

windows but do not affect attention calculations. As a result, the Window Attention Processor 

comes before and after the Padding Handler, which runs twice: once for padding addition and 

once for removal following self-attention. Equation (17) represents the mechanism that the 

Padding Handler uses: 

𝑡𝑤
′
= 𝑡𝑤 + 𝑛, 𝑛 = 𝑊 − (𝑡𝑤%𝑊)

𝑡ℎ
′
= 𝑡ℎ + 𝑛,  𝑛 = 𝑊 − (𝑡ℎ%𝑊)

 (17) 

The values tw and th in the given equation represent the token count in width and 

height. When dividing 𝑡𝑤 and 𝑡ℎ  by 𝑊, the number of deficiencies is indicated by the symbol 

n, which represents the window size. The symbol % shows the remainder after dividing a 

number. When 𝑡𝑤  and 𝑡ℎ are not evenly divisible by W, additional padding is added by an 

amount equal to n. To calculate n, divide both 𝑡𝑤𝑎𝑛𝑑 𝑡ℎ by W, then deduct the remaining 

amount from 𝑊. 

Regarding data augmentation, The Cyclic Shifter initiates a cyclic shift at the stage's 

second Swin Transformer  +  Block. This change keeps each token's encoded RGB pixels 

intact but changes the order in which they appear. Popping tokens around is a form of data 

augmentation since each token represents a dynamic object. 

The Attention Processor Window uses padding and cyclic shift masks to apply self-

attention inside a window. By doing this, paddings and pointless tokens are kept from 

impacting the attention mechanism. In the n-th window, the k-th token's value, for example, is 

indicated by 𝑒𝑘
𝑛, and the cyclic shift mask's value is displayed by 𝑐𝑘′

𝑛 . The dimensions of the 

padding mask are 𝑊 ×𝑊, and it is generated according to the window size W. To ensure that 

padded areas do not impact the attention score computation, values in the padding mask (𝑑𝑘
𝑛) 

are modified. 

The padding masks guarantee that attention scores are not affected by additional 

paddings. They function by summing values using the cyclic shift mask, keeping the 

unaffected areas of the show intact while filtering out high-magnitude padding mask values 

through softmax to almost zero. 

The operation of these masks is shown in Figure 5. Yellow rectangles represent 

tokens, grey rectangles represent additional padding, and the window's outline is black. The 

padding mask's black and white colouring represents negative padding values and zero token 

values, respectively.  
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Figure 6. The Window Attention Processor. 

As a result, the final result, defined as 𝐶′ 𝑡, combines the attention outcomes from 

each of the image's windows [30].  

 

𝑑𝑘
𝑛 = {

−100  if 𝑒𝑘
𝑛 is padding 

0  otherwise 
 (18) 

𝐶𝑡
′ = 𝜎(𝑊𝐴𝑃(𝑒𝑘

𝑛) + 𝑑𝑘
𝑛 + 𝑐𝑘

𝑛)(𝑘 = 1,2, … ,𝑊2) (19) 

Equations (18) and (19) are used by the Window Attention Processor 𝐶′ 𝑡 to generate 

its output. In this case, 𝑐𝑘
𝑛 denotes the cyclic shift mask's value, 𝜎(⋅) is the softmax function, 

and WAP stands for Window Attention Processor. 

The MLP functions similarly to the Swin Transformer in that it blends features. The 

Swin Transformer is combined with the output feature + Block's input through a residual 

connection, and the MLP is used to connect the two further. Because there are 𝑛 blocks and 𝑖 

stages, each Swin Transformer + Block extracts features, which results in 𝑛 × 𝑖 parts. 

4. Results and Discussion 

4.1. Experimental Setup 

The studies were conducted on Google Colab, a cloud computing platform that 

provides GPU and TPU resources at no cost. The process moved along much faster when 

training on a GPU instead of a PC. Using a Tensorflow GPU backend and the Python Keras 

library, the proposed model was applied to the dataset's image classification. Table 2 contains 

comprehensive information about the hardware and software used in these experiments. 

Table 2: Specifications for the experiment's hardware and software. 

Hardware Software 

Processor: core i5 2.2 gigahertz Programming language: Python version 

3.9 

RAM: 32 gigabytes OWLReady: Under the GNU LGPL 

licence v3 
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Graphical Processing Unit (GPU) Backend: Tensorflow GPU 

Hard drive: 500 gigabytes NVIDIA, 16 

gigabytes RAM 

Deep learning API: Keras GPU 

4.2. Performance Metrics 

True positive (TP), true negative (TN), false positive (FP), and false negative (FN) are 

the four primary analytical metrics that this study computed to evaluate the effectiveness of 

the classification system built using the datasets. 

 When evaluating the efficacy of a classification model, ACC is described as the ratio 

of correct assumptions to total assumptions made in equation (20): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
     (20) 

PR, also known as positive predictive value in equation (21), measures the ratio of all 

positive examples to the number of correctly identified positive models: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (21) 

RC called the sensitivity or actual positive rate, represents the proportion of 

adequately determined positive cases out of all positive instances, as shown in equation (22). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (22) 

The F1 in equation (23) is an integrated metric that incorporates PR and RC into a 

single numerical value: 

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (23) 

4.3. Performance Validation 

Table 1: Various classes of thyroid disease detection 

Classes ACC PR RC F1 

Thyroid cancer 97.52 97.72 97.25 97.41 

Hyperthyroid 97.41 97.14 97.63 97.22 

Hypo thyroid 98.54 98.43 97.32 98.33 

Thyroid nodules 98.43 97.71 98.61 98.54 

Normal thyroid 98.56 98.92 97.96 97.92 

Thyroiditis 99.45 98.93 98.84 98.82 

Table 1 and Figure 7 present performance metrics for the detection of various classes 

of thyroid diseases, showcasing the accuracy (ACC), precision (PR), recall (RC), and F1 

score for each category. Thyroid cancer detection achieved an accuracy of 97.52%, with a 

precision of 97.72%, recall of 97.25% and F1-Score of 97.41%, respectively. 

Hyperthyroidism detection exhibited an accuracy of 97.41%, with precision, recall, and F1 

score values of 97.14%, 97.63%, and 97.22%. A high accuracy of 98.54% was shown in 

detecting hypothyroidism, with corresponding precision, recall, and F1 score values of 
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98.43%, 97.32%, and 98.33%. 98.43% of thyroid nodules were found, with related precision, 

recall, and F1 score values of 97.71%, 98.61%, and 98.54%. The accuracy of the standard 

thyroid classification was 98.56%, with precision, recall, and F1 scores of 98.92%, 97.96%, 

and 97.92%. Finally, thyroiditis detection showed exceptional performance with an accuracy 

of 99.45%, precision, recall, and F1 score values of 98.93%, 98.84%, and 98.82%, 

respectively. These results highlight the proposed thyroid disease detection system's 

remarkable accuracy and precision in differentiating six classes. The evaluation proved that 

the proposed model is effective across multiple classes.  

 

Figure 7. Evaluation of Various classes  

Table 2: Comparing the proposed model to alternative models. 

Models ACC PR RC F1 

LeNet 95.32 95.13 94.33 95.02 

AlexNet 96.42 96.24 95.85 96.13 

VGGNet 97.34 97.35 96.97 97.34 

CapsNet 98.13 98.27 97.20 98.46 

Proposed En-SwinT+ 

Model 

99.45 99.22 98.96 99.07 

 

A detailed comparison of the proposed En-SwinT+ Model across many forms of 

accuracy measures can be found in Table 2 and Figure 8, along with comparisons to several 

other well-adopted models such as LeNet, AlexNet, VGGNet and CapsNets. The assessment 

criteria are F1 score, recall (RC), accuracy (ACC) and precision (PR). Using an astonishingly 

accurate En-SwinT+ Model (99.45 %), it not only beats all the other models but demonstrates 

its superior classification abilities. However, the model is also excellent in accuracy 

(99.22%), recall (98.96%) and F1 score (99.07%). Compared with traditional and widely 

used models such as LeNet, AlexNet, VGGNet and even Caps- Net (the novelty of which is 
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noteworthy), the proposed En-SwinT+ Model attainably holds the best score for every metric. 

This verifies its ability to tackle the thyroid disease classification. 

 

Figure 8. Comparison of the proposed model with existing models 

Table 3: Existing model comparison 

Models Accuracy (%) 

XGBoost [14] 99 

Modified ResNet [15] 94 

CAD [18] 96 

CANFES [19] 99.15 

Deep CNN [20] 97.2 

Proposed En-SwinT+ Model 99.45 

Experiments to compare the accuracy of different models, Table 3 and Figure 9 

evaluate each model's performance based on metrics. The model with the highest accuracy of 

99.45 % is found among other models assessed, namely the Proposed En-SwinT+ Model. The 

results of this model far outperform those from other noted methods (XGBoost 99 %; 

CANFES 98.15%; Modified ResNet 94%; and Deep CNN 97.2%). Looking at this 

comparison, it is clear that the Proposed En-SwinT+ Model outperforms both modified and 

traditional versions for achieving accurate thyroid disease classification. 
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Figure 9. Comparison of existing models with the proposed model. 

5. Conclusion 
Finally, integrating medical ontologies, IWSO, for ontology matching in thyroid 

datasets is a critical link between medical informatics, clinical decision support systems, and 

the cutting-edge technologies used to diagnose thyroid disease. Preprocessing, such as 

applying Log and Gaussian filters, can improve data quality. For feature extraction, Gabor 

Wavelet Transform proved effective. Incorporating the Enhanced Swin Transformer (En-

SwinT+) model highlights how tailored deep learning solutions can work, with a remarkable 

99.45 % accuracy in identifying thyroid disease. The research also emphasizes the need for 

ontology matching in medical pathways and provides a systematic, advanced technical 

method with high potential to improve the accuracy of thyroid disease identification. The 

methodology put forward could be further extended to various medical fields. Its 

effectiveness beyond the field of thyroid disease needs to be explored in future work. More 

importantly, trying out real-time applications and integrating the model into clinical 

environments could enhance its practicality and expandability. 
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